
Visual Rhythm Detection
and Its Applications
in Interactive Multimedia

Although music is typically considered a

strictly auditory art form, human interac-

tion with music consists of a much richer

combination of auditory, visual, and physical

experiences and responses. From traditional

folk dance to classical ballet, or from the latest

music videos to just getting down on the dance

floor, physical movement and other visual

stimuli have always been closely tied to the mu-

sical art form. The link between all of this is

rhythm. Rhythm has been extensively studied

in the fields of audio signal processing and

music information retrieval, and many systems

now can automatically extract the rhythm and

tempo from an audio signal. In this article we

present the concept of visual rhythm, and de-

scribe two systems that use it.

In music, rhythm refers to the repetitive pat-

tern of melodies, phrases, or percussive events

that form a piece’s structure. It emerges from

temporal elements such as the onset of a

drum, a note played on an instrument, or the

silence between two notes. Underneath the

rhythm is a regularly spaced grid that organizes

when, and in what succession, these elements

occur. In western musical terms, the grid is

referred to as the meter, while the speed at

which the meter is traversed is the tempo.

Much research has been done in the area of

musical tempo and rhythm detection to auto-

matically extract these significant rhythmic

events from audio signals.1 In their most basic

form, automated methods search for musical

onsets, characterized by a rapid increase in en-

ergy in the audio signal and then attempt to

fit them to a grid. The best-fit grid inherently

contains several useful pieces of information,

such as a time signature and a tempo measured

in beats per minute (BPM). Additionally, by

searching for prominent, regularly spaced

rhythmic elements, one can find the individual

beats.

When we listen to music that we like, one of

the most natural responses is for us to move our

bodies. Those gifted with great coordination

can perform an enticing salsa or a death-

defying break-dance, while the less coordinated

of us get by with a slight shuffling of the feet, a

nodding of the head, or at least an inconspicu-

ous tapping of the foot. But no matter what the

level of our dancing ability, whenever we move

along with music, what we are doing is con-

stantly analyzing a stream of audio, searching

for repeated patterns, and then adjusting our

movements to match those patterns. Flipping

this paradigm on its head, when we watch a si-

lent video of a person dancing, we can similarly

perceive a related rhythm and tempo from their

movements. Such observations lead us to pro-

pose the concept of visual rhythm.

These rhythmic events might come from a

wide variety of visual cues: a person dancing

in front of a fixed camera, a camera capturing

a fixed scene with rhythmic zooming or

panning movements, or a video capture of a

scene with periodic lighting changes. In

other words, rhythmic changes in human
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movements, camera movements, and environ-

mental lighting can all result in the perception

of visual rhythm. Similar to musical tempo, the

concept of visual tempo can be used to charac-

terize visual rhythm by describing the rate at

which rhythmic events occur.

Applications
The ability to detect visual rhythm can en-

able many novel multimedia applications that

allow more intuitive interaction between a

user and both audio and video content. Exam-

ples of such systems include automated music

video editing, video jockey tools, video games,

and other human-computer interface applica-

tions. We believe that successful multimedia

applications of the future will be driven by a

deep integration of audio and video technolo-

gies, to deliver a true multimedia experience.

While many use-cases exist, the two

described here highlight cardinal applications

in audiovisual alignment. The first, Visual

Rhythm-based Audio Playback System (VRAPS),

extracts visual rhythm from a live video stream

and uses visual tempo to control the playback

rate of a song.2 The second, Automatic Music

Video, extracts visual rhythm from a prere-

corded video file and matches the visual

tempo to the auditory tempo by time-stretching

and time-compressing the video.

VRAPS

VRAPS is an interactive multimedia applica-

tion that lets a user control the playback speed

of an audio file by making rhythmic motions in

front of a camera (see Figure 1). The faster the

user moves or dances, the faster the music

plays. To achieve this effect, VRAPS draws

upon rhythmic information from both the

audio and video signals. First, it extracts the

audio tempo of the chosen song using well-

known audio tempo extraction techniques.3

Then, as the song begins playing back, VRAPS

analyzes the user’s movements from a video

camera in real time, applying a visual rhythm-

detection algorithm to determine a visual

tempo. The audio signal is then stretched or

compressed in time to match the audio tempo

to the visual tempo. The time-stretching factor

is adjusted continuously on the basis of the in-

stantaneous visual tempo detected from the

user’s movements. Therefore, the user is able

to interactively control the audio playback

speed by changing the pace of his or her

movements. VRAPS can ensure that every user

is on beat and in time by continuously follow-

ing their every move, despite any attempts to

dance poorly.

Figure 2 (next page) outlines the process

flow of the VRAPS system.

� The user selects a music file. Automatic

rhythmic analysis techniques are applied to

extract the audio tempo from the chosen

music file. The system initially plays back

the music at its original speed.

� The user then dances or makes rhythmic

movements in front of a video camera. The

system uses a visual tempo-extraction algo-

rithm to detect the visual tempo present in

the user’s motion.

� This visual tempo is compared with the

detected audio tempo, and the audio signal

is either sped up or slowed down, using

audio time-stretching techniques, to match

the audio to the video tempo.

� The time-stretching factor is continuously

updated on the basis of the instantaneous

visual tempo detected from the user’s move-

ments. In this way, the users can interac-

tively control the playback speed of the

music by changing the speed of their rhyth-

mic motion.

VRAPS works with standard PC hardware

and a single webcam. The system doesn’t re-

quire powerful hardware or stereo or 3D cam-

eras, or sensor-based motion controllers like

those used in Nintendo Wii, Microsoft Kinect,
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Figure 1. Visual

Rhythm-based Audio

Playback System user

interface: (a) playback

controls, (b) video

signal from camera, (c)

song list, (d) original

audio tempo, (e)

detected visual tempo,

and (f) 2D visual

feature.

Ja
n

u
a
ry

�
M

a
rch

2
0
1
1

89



or Sony Move. Nor does it require computa-

tionally intensive algorithms for gesture

recognition.

Automatic Music Video

In a second demonstration, we use visual

tempo to make a music video. The popularity

of home-brewed music videos exploded in re-

cent years, from the infamous Auto-Tune the

News Web series to the music video mash-ups

created from disparate video clips set to a

beat. The concept of creating new music videos

with different video data is not new. Beaure-

gard et al. proposed intercutting user-supplied

visual data with preexisting music videos.5

Visual rhythm further empowers automated

music-video creation by offering a common ter-

minology, namely rhythm, through which the

audio and video elements can communicate.

To create a rhythmically synchronized

music video, we begin by extracting visual

tempo and audio tempo from user-selected

video and audio files. We then continuously

adjust the video playback rate so that the

local visual tempo matches the audio tempo.

For example, a user-generated video of a bear

bounding across a river displays a clear visual

rhythm as the bear’s body moves up and

down in the water. The user might want to

add a particular song as a soundtrack to this

video before sharing it with friends. By estimat-

ing the visual tempo of the video and the audio

tempo of the song, the system will determine a

visual stretching factor by comparing the two

tempos. We then speed-adjust the video

to make the tempos equal by repeating or

removing a given number of video frames on

the basis of the visual stretching factor. Finally,

we align the first auditory beat of the song to

an early prominent visual beat to synchronize

the two sources (see Figure 3). This process pro-

duces a tight coupling between auditory and vi-

sual cues, melding them into single perceptual

events. This approach can obviously be applied

to generate music videos from a variety of dif-

ferent video sources, which may include all

types of rhythmic elements.

Visual tempo extraction
Visual tempo, the driving force behind these

applications, is extracted by examining visual

cues that correspond to motion and other per-

ceptually significant changes in the video

signal. We begin by describing two video fea-

tures, absolute frame difference and optical

flow, which capture many of the visual cues

needed to extract visual tempo. They pick up

on local cues, such as a dancing body or a wav-

ing hand, as well as global cues such as video

cuts and lighting changes. To extract visual

tempo from these features, we build off of pre-

vious work in music information retrieval and

auditory tempo extraction. We analyze the 2D

video features to derive a 1D novelty feature,

then use traditional tempo-extraction methods,

such as autocorrelation, to find the visual

tempo.

Visual feature extraction

Two kinds of visual features are imple-

mented in our demonstrations: the absolute

frame difference (see Figure 4a) of two
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consecutive frames (see Figures 4b and 4c), and

2D angle-magnitude histogram (see Figure 5a,

next page) of optical flows (see Figure 5b). Both

features characterize the dynamics of the overall

picture without performing expensive, yet unre-

liable, body tracking in real time. Thus we avoid

the computationally exorbitant blob and limb

detection and tracking, as well as joint-angle

estimation. Additionally, these features can

accommodate multiple moving objects such

as a group dance or rhythmic lighting effects.

The absolute frame difference of two consec-

utive frames is a fast and reliable way to high-

light the transient characteristics of the overall

picture. The motion of a bobbing head, as

shown in Figure 4’s frames (see Figures 4b

and 4c), can easily be seen by the absolute

pixel difference in the head contours in

Figure 4a. Unfortunately, the absolute frame

difference lacks stability when it comes to

small disturbances in the environment. A

more stable indicator can be derived from the

optical flow feature. Optical flow is the pattern

of apparent motion of objects, surfaces, and

edges in a visual scene caused by the relative

motion between an observer (an eye or a cam-

era) and the scene. Given two consecutive

video frames of an object in motion, optical

flow analysis detects pixels that have changed

position between the two frames. The optical

flow feature consists of the 2D coordinates of

the moving pixel in each of the successive
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frames. From these coordinates, we can com-

pute an optical flow vector consisting of the

angle and magnitude of the detected motion.

There are several different methods for comput-

ing optical flow. In our system, we used the py-

ramidal implementation of the Lucas Kanade

optical flow estimation algorithm.4

Having estimated a set of optical flow vectors

for a two-frame sequence, we then derive statis-

tics to describe the distribution of the overall

motion between the frames. Ignoring the abso-

lute locations of the moving pixels, we create a

2D histogram of the optical flow vectors, where

the horizontal and vertical axes correspond to

the magnitude and angle of the vector, respec-

tively. The intensity in each bin in the histo-

gram is computed by counting the number of

optical flow vectors within the bounding

angle and magnitude values for that bin (see

Figure 5b). The darker the pixel, the more op-

tical flow vectors are in the bin. The histo-

gram shown in Figure 5b has angles ranging

from �p to p (top to bottom), and magnitudes

ranging from three to 10 pixels (left to right).

Novelty calculation

Given either the absolute frame difference

or the 2D histogram of the optical flows, we

need to reduce the data to a 1D novelty feature

that can be used with more traditional tempo-

detection approaches from the music informa-

tion retrieval domain. The 1D novelty feature

derived from the absolute frame difference can

be calculated as the energy of the difference

frame. The 1D novelty feature derived from

the 2D histogram of the optical flows can be cal-

culated as the moment of the 2D histogram.

M ¼
X

x

X

y

x� x0ð Þ y � yoð Þh x, yð Þ

where x and y correspond to coordinates in

angle and magnitude, h(x, y) is the bin count

at the (x, y) coordinate, and (x0, yo) is the cen-

ter coordinate of the 2D histogram. An exam-

ple 1D novelty function is shown in Figure 6.

It should be noted that taking the energy or

the moment are not the only ways to transform

2D features to 1D novelty features. Readers are

encouraged to experiment.

Visual tempo calculation

Given the 1D novelty feature, we are ready

to calculate the visual tempo. We measure the

tempo in BPM and compute it by taking the

autocorrelation of the 1D novelty function

(among other more advanced methods3).

While most music-tempo calculations assume

stationary or nearly stationary tempos, VRAPS

must handle a constantly varying visual

tempo. Fitting our implementation to real-

time applications such as VRAPS, a sliding win-

dow is used to compute the autocorrelation of

the 1D novelty feature.

An example autocorrelation of the 1D nov-

elty feature is shown in Figure 7. Given a

video capturing frame rate at 24 frames per sec-

ond and the first peak of the autocorrelation

function at 29 frames, the visual tempo

is then: 29 frames � 1/24 seconds/frames �

60 minutes/second ¼ 72.5 BPM.

Synchronizing audio tempo

to visual tempo
In the VRAPS application, given the original

music BPM and the instantaneous visual BPM,

the music needs to be stretched in time by a

factor of BPMvisual/BPMaudio, where BPMvisual is

the instantaneous tempo of the video signal,

and BPMaudio is the overall tempo of the original

audio signal. As the instantaneous tempo of the

video signal changes, the playback speed of the

audio signal will be adjusted by the calculated

time-shifting factor. In a variant of this mode,

the tempo of the audio signal is estimated on

a continuous basis using a sliding analysis

window.

If the ratio is larger than one, the music is

sped up, or compressed; if the ratio is smaller

than one, the music is slowed down, or

expanded. This ratio is fed into a time compres-

sion and expansion algorithm to increase or de-

crease the audio playback rate. In particular,

the synchronous over-lap add (SOLA) algo-

rithm was chosen for its ability to compress or

expand in real time without altering the pitch

of the original audio.
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SOLA achieves its pitch-preserving compres-

sion and expansion via a two-step process. First,

it breaks up the original audio signal into suffi-

ciently small segments. Then, it recreates the

audio by piecing these segments back together.

As it rebuilds, it will repeat segments of the

audio when it needs to expand the audio, or

skip segments of the audio when it needs to

compress. As an example, if the ratio indicates

75 percent of the original tempo, then the algo-

rithm will make the audio segments 1.0/0.75,

or 133 percent of their original length. It does

this by overlapping the segments by 33 percent

and crossfading between them. To provide

smooth transitions joining these segments,

the algorithm performs a cross correlation be-

tween the overlapping portion of one segment

and the next, searching for the location where

they can be placed back together with the

least amount of discontinuity.

The SOLA algorithm doesn’t handle transi-

ents well, nor does it make any adjustments

for the type of audio that it is trying to splice

back together. To stretch audio containing a

complete stereo mix including drums, two

upgrades were made to the original SOLA algo-

rithm. The first improvement changes the type

of cross-fade used depending on the correlation

between two segments. One segment is pro-

jected onto the next at the cross-fade point

via a dot product to choose between an equal

volume and an equal power cross fade window.

This process removes most of the volume mod-

ulations that are typical artifacts of this type of

algorithm. The second modification avoids

repeating areas in the audio that have transi-

ents, for instance drum beats. If a portion of

an audio block is marked as a transient, then

that segment is only allowed to be repeated

once in the case of stretching, and it is not
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allowed to be skipped in the case of compress-

ing. This avoids the echo, on drums and other

transients, that is a typical artifact of the

SOLA algorithm.

Other uses of visual rhythm
We believe that visual rhythm detection

can enable many new interactive multimedia

applications in addition to controlling audio

playback and creating music videos. We have

listed a few of these ideas here.

Music substitution in workout videos

Many people complain that watching the

same workout video every day can become bor-

ing. If, instead, users could select songs from

their own music collection rather than listen

to the same old song on the DVD, they might

be more motivated to keep up with their regi-

men. A rhythm-matching system could first an-

alyze the desired workout video to detect the

position of visual beats, as well as the visual

tempo. Users could then direct the system

to a collection of audio files whereupon

traditional audio beat-detection and tempo-

estimation techniques would be used to extract

the rhythmic characteristics of each file. The

system could then find candidate audio files

that have the same audio tempo in BPM as

the selected workout video. These audio files

could then be substituted for the original

soundtrack to provide a fresh workout video

every day. To make sure the new piece of

music and the video content blend naturally,

the audio beats could be aligned with the visual

beats.

Video jockey tools

Video jockeys and disc jockeys already collab-

orate to create alluring audio/visual experiences

at nightclubs and music festivals. Visual rhythm

could empower video jockeys in the same way

that automatic audio rhythm extraction has

empowered disc jockeys. It would give them a

way to organize, index, and search their videos,

as well as provide a common element with

which to select and match visual and audio con-

tent. It would allow them to synchronize with

the music being played as well as choose videos

appropriate for a given audio tempo.

Camera-based dancing video game

In the real world, a dance student learns

how to dance by mimicking an instructor’s

moves while the instructor gives feedback on

how well the student follows his or her

moves. In a game setting, such as in the popu-

lar arcade game Dance Dance Revolution (DDR),

a specialized floor pad and visual arrow indica-

tors are used to judge how well the gamer

matches both the sequence and timing of the

designated moves of the dance. While learning

how to dance with a live instructor is probably

more natural, the game setting might be more

entertaining. We can use our visual rhythm-

detection technique to enable rhythmic

dance-based game interactions that are both

natural and fun.

A possible visual-rhythm-based game might

work as follows: without supplying any music

or annotated arrows as DDR does, a dance

video is simply presented on a screen. The player

must follow the video by dancing or moving in

time with the rhythm of the on-screen dancer.

The player’s movements are captured by a cam-

era mounted on the game console. Visual beats

from the captured video are detected in real

time, and are matched to the visual beats from

the dance video. The more closely the two visual

beats match, the higher the gamer scores.

Conclusions
The temporal nature of visual and auditory

signals is indisputable, and the interdependence

between these two domains has many applica-

tions in the fields of musical performance, multi-

media content creation, and human�computer

interaction. However, the study of rhythm and

tempo has until now been largely confined to

the audio domain. We hope that our exploration

of visual rhythm detection will inspire further re-

search into rhythm and tempo as meaningful

video descriptors for the next generation of mul-

timedia applications.

There are a few areas where future work on

the visual rhythm system would be beneficial.

The first would be to go beyond detecting a

more high-level visual tempo, to detect the pre-

cise timing of visual onset events that make up

the visual tempo. These can be associated with

sudden changes in the direction of motion,

shot changes, or lighting effects. Knowing the

exact temporal location of visual onsets would

give a more granular description of the visual

rhythm in the signal for use in synchronization

or interaction with audio signals.

In addition to this, while the visual rhythm

detection we have described is robust at detecting
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binary (back and forth) rhythmic motion, fur-

ther development is required to make the algo-

rithm more robust at detecting visual tempo

from more complicated periodic movements.

We can also envision being able to capture

the rhythmic pattern of a video signal, which

characterizes the repetitive pattern of different

visual events that make up more complicated

motion such as dance movements and gestures.

Another area of improvement involves using

more advanced techniques for the detection of

both visual and audio tempo to circumvent the

problem of recognizing something that is either

double or half the tempo of the actual tempo.

Both the audio and video tempo could use a

probability-based method to determine the

most likely tempo from among a set of candi-

date tempos.

We look forward to seeing additional cre-

ative uses of the visual rhythm concept in the

future. MM
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